18 research outputs found

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applicationm

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applications

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    The algorithmic aspects of network slicing

    No full text
    Network slicing is a technique for flexible resource provisioning in future wireless networks. With the powerful SDN and NFV technologies available, network slices can be quickly deployed and centrally managed, leading to simplified management, better resource utilization, and cost efficiency by commoditization of resources. Departing from the one-Type-fits-All design philosophy, future wireless networks will employ the network slicing methodology in order to accommodate applications with widely diverse requirements over the same physical network. On the other hand, deciding how to efficiently allocate, manage, and control the slice resources in real time is very challenging. This article focuses on the algorithmic challenges that emerge in efficient network slicing, necessitating novel techniques from the communities of operation research, networking, and computer science. © 1979-2012 IEEE
    corecore